
1.  Introduction
Despite its bearing on global climate variability, some important aspects of El Niño–Southern Oscillation 
(ENSO)’s response to external forcing and the underlying physics remain controversial (e.g., Dee et al., 2020). In 
particular, there is conflicting evidence for whether or not ENSO dynamically responds to the radiative forcing 
of large volcanic eruptions. During periods of explosive volcanism, sulfate aerosols are injected into the strato-
sphere and scatter incoming solar radiation, causing short-term (1–5 years) global cooling between −0.1°C and 
−0.5°C (Angell, 1988; Angell & Korshover, 1985; Handler & Andsager, 1994; McCormick et al., 1995; Robock 
& Mao, 1995; Shindell & Schmidt, 2004; Shindell et al., 2003, and see Robock, 2000, for a review). Coupled 
climate models simulate a robust cooling response to volcanic forcing (Church et al., 2005; Gleckler et al., 2006; 
Stevenson et al., 2016; Timmreck, 2012); both temperature and precipitation decrease following the Pinatubo 
eruption in observations and the Atmospheric Model Intercomparison Project 5 (AMIP5) multimodel ensemble, 
for example (Meyer et al., 2016).

To date, a number of studies have hypothesized and tested the potential for a causal relationship between explo-
sive volcanism and El Niño events. Previous studies using both paleoclimate data and coupled general circulation 
models (GCMs) have suggested that volcanic eruptions might cause, or increase the likelihood of, El Niño events 
or an “El Niño-like” state (Adams et al., 2003; Emile-Geay et al., 2008; Handler, 1984; Khodri et al., 2017; Maher 
et al., 2015; Pausata et al., 2015, 2016; Stevenson et al., 2016). For example, Stevenson et al. (2016) investigate 
the response to last millennium volcanism in the Community Earth System Model (CESM) last millennium 
ensemble (LME) and find that El Niño events are more likely to occur during the two boreal winters following 
an eruption, accompanied by a slowing of the Walker circulation. Warming resembling the spatial features of 
El Niño occurs in the winter of posteruption years 1 and 2, with a decreased probability of La Niña conditions 
(Stevenson et al., 2016). These responses were found statistically significant for all eruptions in the full ensemble; 
but, CESM ENSO variance exceeds that of the observations by a factor of 2, and this enhanced ENSO response 
may amplify interactions with volcanic cooling (Stevenson et al., 2016).
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The ocean dynamical thermostat mechanism provides a dynamical hypothesis linking volcanic cooling and 
ENSO (Clement et al., 1996; Emile-Geay et al., 2008): reduced solar radiation due to volcanic aerosol scatter-
ing preferentially cools the western equatorial Pacific, shoals the zonal tropical Pacific sea surface temperature 
(SST) gradient, and weakens the trade winds. This in turn promotes El Niño conditions (Clement et al., 1996), 
and the eastern equatorial Pacific warms to compensate for cooling. However, it has been suggested that only 
large, explosive tropical eruptions increase the likelihood of or generate an El Niño event, whereas smaller erup-
tions do not create a significant effect (Adams et al., 2003; Emile-Geay et al., 2008; Mann et al., 2005). The 
role of internal variability (Emile-Geay et al., 2008; Lehner et al., 2016), subtropical wind stress (McGregor & 
Timmermann, 2011), the migration of the Intertropical Convergence Zone (ITCZ; Pausata et al., 2015), or conti-
nental cooling (Ohba et al., 2013) may all contribute to a complex and multifaceted tropical Pacific response to 
volcanism.

The nature of the connection between ENSO and volcanism has been further explored using paleoclimate data, 
primarily using tree-ring width (TRW) records. Stevenson et al. (2016) show that the hydroclimate response to 
volcanism in CESM disagrees with TRW data from North America and Southeast Asia (Anchukaitis et al., 2010; 
Li et al., 2013). However, Adams et al. (2003) examined two TRW paleoclimate reconstructions (with a record 
extending back to 1649) and showed that volcanism and the associated global cooling roughly doubled the likeli-
hood of an El Niño event by nudging the ocean–atmosphere system toward a state where El Niño conditions are 
favored. The authors found a significant, multi-year, El Niño-like response to explosive tropical forcing using two 
independent reconstructions of El Niño spanning the past several centuries, and demonstrated a doubling of the 
probability of a wintertime El Niño event if a low-latitude volcanic eruption occurs in the previous year. Further-
more, the authors suggest that there is a subsequent rebound into La Niña conditions following this change, mean-
ing that volcanic eruptions effectively synchronize the internal clock of ENSO. However, recent high-resolution 
coral reconstructions from Palmyra Atoll stand in contrast to these studies and do not show a significant ENSO 
response to volcanic eruptions during the last millennium (Dee et al., 2020).

Though recent work has made progress toward resolving such discrepancies via investigations of proxy biases 
(Zhu et al., 2020), ENSO’s response to volcanism remains inconsistent in model simulations and the paleoclimate 
record. A clear, consistent diagnosis of the causal mechanism, if any, between volcanism and ENSO is lacking 
(and see Emile-Geay et al., 2020, for a review). The primary barrier to a full diagnosis of ENSO’s response to 
such external forcing is the lack of long-term reconstructions of ENSO dynamics that could be analyzed along 
with the volcanic forcing record. There are a large number of studies that have used paleoclimate data (Adams 
et al., 2003; Anchukaitis et al., 2010; Dee et al., 2020; Li et al., 2013; Stevenson et al., 2016) and model simu-
lations (as described above) to evaluate ENSO’s response to volcanism. Extending this, several recent papers 
explore the tropical Pacific response to external forcing in new data assimilation products, including the Last 
Millennium Reanalysis (LMR, Sanchez et al., 2021; Tardif et al., 2019; Zhu et al., 2022) and the Paleo Hydro-
dynamics Data Assimilation product (PHYDA; Steiger et al., 2018). While two recent papers explore the global 
hydroclimate (Tejedor et al., 2021a) and temperature responses (Tejedor et al., 2021b) to volcanic eruptions in 
PHYDA, in general, no studies to date have focused primarily on the dynamical response of ENSO to volcanism 
in this paleoclimate data assimilation reconstruction.

To this end, here, we expand on previous work to investigate the tropical Pacific response to volcanism in the 
PHYDA, which is a seasonally resolved paleoclimate data assimilation product spanning the last 2,000 years 
(Steiger et al., 2018). PHYDA allows us to test the predominant theory for the tropical Pacific response to volcan-
ism within a framework that naturally includes information from both climate models and paleoclimate data. The 
temporal and global spatial coverage of PHYDA facilitates examination of the timing of warming and cooling 
events proximal to volcanic eruptions. PHYDA’s 2,000-year long reconstruction of NIÑO-region SSTs addition-
ally provides roughly ∼1,000 years of additional overlap with the most recent volcanic forcing reconstructions 
from Toohey and Sigl (2017), which date back to 500 BCE; this expands the number of eruptions in our analysis 
compared to studies which focus solely on the last millennium (e.g., Dee et al., 2020; Stevenson et al., 2016; Zhu 
et al., 2020). PHYDA thus provides a complimentary paleoclimate test bed for comparison against the climate 
model response to tropical volcanism.

If a mechanism linking external forcing to ENSO variability exists, such a relationship should be resolved in 
state-of-the-art paleoclimate data assimilation products such as PHYDA. Given that spatial patterns of ENSO 
SSTs are highly variable (Capotondi et al., 2015; Johnson, 2013), our approach employing a full spatiotemporal 
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SST grid can provide further tests of the null hypothesis that volcanism favors an El Niño-like response. Unlike 
paleoclimate reconstructions derived from point-based data from corals or networks of tree rings, PHYDA incor-
porates all available paleoclimate data with climate model physics to provide a reconstruction of the entire spatial 
field for each year in the last 2,000 years. This gives us the opportunity to examine not only the reconstructed 
magnitude of the SST response but also the pattern of SST changes following a volcanic eruption. (However, note 
that the spatial SST patterns present in PHYDA are based on the underlying climate model used in the creation 
of PHYDA.) Furthermore, evaluation of the full SST field facilitates direct comparison to climate model simu-
lations, which provide detailed spatial information on both the magnitude and patterns of SST changes during 
ENSO events.

In tandem with reconstructions of volcanic aerosol reconstructions spanning the last 2,000 years, we use PHYDA’s 
reconstruction of NIÑO region SSTs (Section 2) and evaluate the response to volcanic forcing using three differ-
ent methods: superposed epoch analysis (SEA), probability density functions, and self-organizing maps (SOMs; 
Section 3). Implications for the robustness of volcanic impacts on ENSO, as well as the sensitivity of our results 
to the analysis method employed, are discussed in Section 4.

2.  Data and Methods
2.1.  PHYDA

The recently developed PHYDA is the first global reconstrfuction of temperature, hydroclimate, and dynamical 
variables over the past 2,000 years (Steiger et al., 2018). It is based on paleoclimate data assimilation, which 
optimally combines paleoclimate proxies with the dynamical constraints of coupled climate models. In particu-
lar, PHYDA assimilated 2,978 proxy data time series to produce probabilistic annual, seasonal, and monthly 
reconstructions of the past 2,000 years (Figure 1a). (For this study, we employ annually averaged fields only.) 
PHYDA’s underlying proxy network varies in time, with reductions from the full network such that there are 
approximately 650 proxies by the year 1500, 200 proxies by the year 1000, 100 proxies by the year 500, and 50 
proxies by the year 1 (see Steiger et al., 2018; Figure 1).

PHYDA has been extensively validated in both the original publication (Steiger et al., 2018) as well as subse-
quent uses, showing in particular that PHYDA has a more realistic ENSO than the underlying model used in 
its construction (Steiger et al., 2019). PHYDA's cooling response to volcanic eruptions is very similar to maxi-
mum late-wood density tree-ring reconstructions despite the DA inclusion of extensive TRW data (Tejedor 
et al., 2021a). Additionally, Steiger et al. (2018) showed that the ENSO region contains areas with some of the 
most skillful and accurate ensemble estimates for all of PHYDA’s three seasonal averages. Here, we employ the 
annual SST fields and NIÑO3.4 index from PHYDA spanning years 1–2000 CE (Figure 1a) to test the hypothesis 
that El Niño events increase in frequency or severity after strong eruptions.

The model prior employed for PHYDA’s data assimilation is the Community Earth System Model version 1.2 
Last Millennium Ensemble (CESM-LME; Kay et al., 2015). The model prior comprises a critical component of 
the data assimilation reconstruction: all spatial covariance information is derived from the model prior, whereas 
the time history of the reconstruction is entirely driven by the underlying proxy data. Note that PHYDA’s SSTs 
have additionally been bias corrected from the original CESM-LME output (Steiger et al., 2019).

Like most climate field reconstructions, PHYDA’s uncertainties change through time as the number and quality 
of proxy data change. We illustrate this effect for PHYDA’s NIÑO3.4 reconstruction in Figure S1 in Supporting 
Information S1. The supplemental figure shows the standard deviation of PHYDA’s NIÑO3.4 ensemble recon-
struction through time (red line) and also the standard deviation of the CESM-LME NINO3.4 index (gray dashed 
line), given that the CESM-LME is the data assimilation prior for PHYDA. The standard deviations have been 
normalized with respect to the CESM-LME simulation. For reference, we also include the mean standard devi-
ation for all 2 m temperature grid point time series in PHYDA (black dashed line). Several important features 
emerge: uncertainties increase with time as more proxies are lost further back in time. In addition, Figure S1 in 
Supporting Information S1 shows the specific uncertainty impact of particular proxies being added and removed 
through time, as seen by the jumps in the time series (likely, this is driven by the presence of proximal tropical 
coral records). Broadly, there is no point in time where PHYDA’s ensemble estimates are consistent with a no-in-
formation reconstruction, which would show PHYDA converging to the prior ensemble (here, the CESM-LME). 
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In conjunction with the skillful ensemble uncertainty estimates shown in Steiger et  al.  (2018), Figure S1 in 
Supporting Information S1 thus indicates that there is useful information within PHYDA’s NIÑO3.4 reconstruc-
tion over the full Common Era.

2.2.  Volcanic Forcing Reconstruction

Our volcanic forcing data are taken from the eVolv2k database (Toohey & Sigl,  2017), a reconstruction of 
volcanic events based on multiple indicators in ice core records. Figure 1b highlights the largest eruptions of the 
last millennium (spanning the period 1–2000 CE) in terms of stratospheric aerosol optical depth (SAOD); all 
volcanic data points within the Common Era intersect the PHYDA reconstruction. Given our focus on tropical 
climate variability, we restrict our analysis to tropical eruptions only. Tropical eruptions are characterized by the 
presence of sulfate aerosols in both Arctic and Antarctic ice core records, using the assumption that high-latitude 
eruptions will be captured only in ice cores of their corresponding pole; sufficiently explosive and sulfurous trop-
ical eruption ash and particulate matter advect toward both poles as a result of stratospheric circulation (Adams 
et al., 2003; Toohey & Sigl, 2017).

Figure 1.  Reconstructed volcanism and NIÑO3.4 sea surface temperatures (SSTs) over the last millennium. (a) Reconstructed NIÑO3.4 SST index anomalies from 
Paleo Hydrodynamics Data Assimilation product (PHYDA; Steiger et al., 2018) (red) along with the 95% confidence interval from the PHYDA ensemble (light gray). 
(b) Reconstructed volcanic eruptions from the Toohey and Sigl (2017) eVolv2k data set (navy). Stratospheric aerosol optical depth (SAOD) thresholds (dashed-dot gray 
lines) indicate the volcanic forcing thresholds employed in analysis. Also shown are Banded Age Model-simulated stochastic age uncertainties; 95% CI given a 0.03% 
error rate.
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2.3.  Superposed Epoch Analysis

We employ SEA (and see Adams et al., 2003; Dee et al., 2020, for a full description of the methodology) to test 
for a response in the NIÑO34 reconstruction following a volcanic eruption. To test for sensitivity to eruption 
size, we repeat the SEA for SAOD thresholds of 0.07, 0.13, 0.22, and 0.4, which correspond to radiative forcings 
of approximately −1.5, −3, −5, and −10 W/m 2, depending on sulfate aerosol scaling uncertainties (Toohey & 
Sigl, 2017); thresholds are marked in Figure 1b. (For reference, Mt. Pinatubo’s 1991 emissions were estimated to 
produce a SAOD of 0.11). A Monte Carlo resampling test (n = 1,000 redraws) of the SST field during non-vol-
canic eruption years was used to test for significance of the SEA results. The block-bootstrap resampling tests 
against the null hypothesis that the temperature response could occur randomly, rather than a forced response.

2.4.  Self-Organizing Maps

We use a SOM algorithm (Kohonen, 1998) to extract the primary modes of Pacific SSTs within PHYDA. The 
SOM algorithm assigns annual SST anomaly fields to spatial patterns of a preset number of “nodes” (or patterns). 
The method essentially creates spatial patterns that maximize their similarity with the underlying SST fields 
by minimizing their Euclidian distance. The algorithm then assigns each annual SST field to the best matching 
pattern. The SOM patterns are approximately the mean of the assigned SST fields and are thus approximately a 
composite of relatively similar SST fields (Johnson et al., 2008). Additionally, the SOM analysis organizes the 
patterns such that similar patterns are assigned to nearby locations within a regular two-dimensional grid. Thus, 
this full process allows one to visualize a reduced-space continuum of patterns in the data set. For the SOM analy-
sis, the SST fields are preprocessed by detrending the SST fields. We removed the trend derived from a 100 years 
LOWESS smoothing of each individual grid point time series (where the detrended time series is equal to the 
original time series minus the smoothed time series; LOWESS computes a local regression using weighted linear 
least squares with a first degree polynomial). This detrending prevents spurious trends in the pattern occurrence 
(Horton et al., 2015), especially during the postindustrial period. Additionally, the SST data are area-weighted 
prior to computing the SOMs (Johnson et al., 2008). Our calculation of the SOMs uses a geographic range of 
102.5°–297.5°E, 33°S–33°N, spanning only the tropical Pacific region.

2.5.  Dating Uncertainties

To account for plausible dating uncertainties in the volcanic forcing reconstruction, we applied the Banded Age 
Model (BAM; Comboul et al., 2014) to the volcanic SAOD time series. BAM inserts errors whereby “true” dates 
are shuffled stochastically, provided some error rate in the age model. SAOD volcanic forcing data are reported 
with maximum age model errors on the order of 1–2 years (Toohey & Sigl, 2017). While this maximum dating 
error is unlikely due to replication and well-constrained top-dates, we nevertheless experimented with two age 
models: (a) using BAM, we assume stochastic age model errors such that years are dropped or doubly counted 
so that the total error is approximately 2 years max; (b) we assume the entire chronology is shifted as a unit 
±1–2 years. The volcanic eruption dates are therefore randomly shifted by 1–2 years maximum, and 1,000 new 
chronologies are generated by the model. We subsequently tested these two age model scenarios alongside the 
“true” or “original” age model, which assumes a perfect temporal constraint.

2.6.  Uncertainty Quantification

For both the SEA and SOM analyses, we perform standard resampling tests to check for significant changes in 
tropical Pacific SST during eruption years, applying a 95% confidence level to establish significance. Changes in 
the SEA SST patterns and shifts in the SOM pattern frequencies are compared to a background of all years in the 
PHYDA ensemble. The three methods employed here (SEA, probability density functions, and SOMs) all apply 
different tests to establish statistical significance. For the SEA, we use a block-bootstrap resampling of the full 
ensemble spread. The probability density function shifts are evaluated using a two-tailed t test. For the SOMs, we 
resample n eruption years at random, m = 1,000 times, for all years compared to the “true” eruption years. We 
additionally resample the ensemble of age-perturbed chronologies (Section 2.5, Figure 1). Essentially, we test for 
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significant shifts against a background state composed of all years using a resampling methodology to account 
for random uncertainties.

3.  Tropical Response to Volcanic Forcing
Volcanic aerosol forcing reduces the amount of energy available to the atmosphere, resulting in cooling; this 
should in turn result in less precipitation and weakening circulation, both in the trade winds and Walker Circu-
lation (e.g., Meyer et  al.,  2016). These energetic changes may impact ENSO characteristics for sufficiently 
large volcanic events. We here define and test the null hypothesis (H0): significant changes in ENSO variability 
follow sufficiently explosive volcanism. H0 is tested using annual tropical Pacific SST indices for ENSO activity 
and annual spatial fields of SST from PHYDA. Note that the annual average in PHYDA is copu April to the 
next calendar year March, capturing the hydrological year. Figure 1b shows 2,000 years (1–2000 CE) of the 
Toohey and Sigl (2017) volcanic forcing reconstruction plotted alongside the PHYDA NIÑO3.4 reconstruction, 
Figure 1a, which are analyzed together in the results that follow.

3.1.  Pacific SST Composite Pattern Response

We used SEA (Methods) to test for a response in reconstructed tropical SST following a volcanic eruption. We 
apply multiple thresholds for volcanic eruptions exceeding SAOD > 0.07, 0.13, 0.22, and 0.4 (Figure 1b and 
Figures S2–S4 in Supporting Information S1), which capture the largest 74, 37, 9, and 1 eruptions within the 
period 1–2000 CE, respectively. SEA is applied to the full SST field for all eruption years and composited to 
detect a coherent response. Note that this analysis uses relative SST, wherein the tropical mean (20°S–20°N) is 
removed to separate the ENSO signal from tropics-wide volcanic cooling (as in Khodri et al., 2017). Figure 2, 
which shows the response for eruptions with SAOD > 0.13, shows that in the eastern and central tropical Pacific, 
SSTs weakly shift toward warmer conditions (on the order of ∼0.1°C–0.15°C) in the 2 years following the erup-
tion (Figure 2, top panel). By year 3, warming in the western Pacific and weak cooling across the eastern equato-
rial Pacific emerge. A block-bootstrap resampling of the PHYDA ensemble data indicates that the relatively small 

Figure 2.  Superposed epoch analysis composite maps for volcanic forcing (SAOD > 0.13, n = 37 eruptions). Nine-year windows are extracted from the tropical 
relative SST data, centered about volcanic eruptions generating radiative forcing for the given threshold. Year 0 is the eruption year. Data shown are the composite 
averages across all eruption horizons. Red colors indicate warmer conditions, and blue colors indicate cooler conditions surrounding eruptions. Hatching or stippling 
indicates that the response to volcanic forcing is not significant at the 95% confidence level.
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SST changes in this SEA analysis are not significant at the 95% confidence level (hatching on figure indicates 
lack of significance).

To test for sensitivity in the SST response to eruption size, we performed an identical SEA for SAOD thresh-
olds of 0.07, 0.22, and 0.4, which correspond to radiative forcing of approximately −1.5, −5, and −10 W/m 2, 
respectively (Toohey & Sigl, 2017; Figures S2–S4 in Supporting Information S1, respectively). For the lowest 
forcing threshold composite (SAOD = 0.07), as in Figure 2, a muted central Pacific (or “El Niño-like”) warming 
response occurs in years 0–2, with posteruption cooling by year 3 (Figure S1 in Supporting Information S1). 
For eruptions exceeding SAOD of 0.22 and 0.4, warming in the eruption year is overtaken by a relatively strong 
cooling response in years 1–3. We note a very small sample size for these larger eruption sizes (n = 9, n = 1, 
respectively). None of the SST changes are significant at the 95% level (Figures S2 and S3 in Supporting Infor-
mation S1). Using the age-perturbed ensemble of volcanic forcing years, we recomputed the SEA for the 5th and 
95th confidence intervals of the ensemble (Figures S7 and S8 in Supporting Information S1). The SEA performed 
on the age-perturbe shows no change in significance at the 95% level, and a significant cooling signal in year 3 
for the 5% CI (Figure S7 in Supporting Information S1).

Finally, Figure S5 in Supporting Information S1 shows the SEA composite response of central Pacific (NIÑO3.4) 
SSTs in the 3 years prior and 6 years following all sufficiently large eruptions for three eruption thresholds (0.07, 
0.13, 0.22). In the central Pacific, SSTs are warmer in the eruption year (0) but show no or very small changes 
in the following year (+1). All three SEA panels suggest a shift toward cooler SSTs in years +2 to +6. The 95% 
confidence intervals of 1,000 Monte Carlo block-bootstrap realizations of the data are shown in gray dashed lines. 
Extrapolating from the significance testing results, none of the post-eruption SEA responses are significant at the 
95% level. Interestingly, the pre-eruption warming in the year prior to the eruption SAOD > 0.07 is significant 
(Figure S5a in Supporting Information S1), potentially indicative of a random bias toward El Niño conditions due 
to internal variability preceding volcanic eruptions. Additional evaluation of the SOM frequencies (Section 3.3) 
also indicates an increase in El Niño-like SST conditions for the year before eruptions (not shown); the relatively 
small eruption sample size makes this difficult to confirm, however.

Resolving the full pattern of SSTs affords spatiotemporal information capturing the tropical Pacific response to 
volcanism that point-based paleoclimate proxy reconstructions do not (though we note the influence of the DA 
prior, CESM, on the spatial pattern). The maps compositing the SST changes across the full tropical Pacific basin 
indicate localized warming in the central Pacific, but PHYDA’s warming response (shown in Figure 2a) is small, 
with a maximum warming of ∼0.1°C–0.15°C. SEA on the NIÑO34 index values similarly indicate weak and 
insignificant warming in the eruption year, followed by a stronger cooling signal. This muted warming stands in 
contrast to previous modeling studies which have suggested a warming response exceeding 1°C (e.g., Pausata 
et al., 2016; Stevenson et al., 2016); furthermore, the warming response is not significant at the 95% level.

3.2.  SST Index and Frequency Responses

As a complement to the widely used, composite averaging-based SEA analyses, we also use two frequency-based 
analyses. In this first frequency-based analysis, we show changes in probability density functions for annual SSTs 
in the NIÑO3.4 region in the year of and 2 years following volcanic events. We compared these data to the mean 
of all non-eruption years as a baseline (Figure 3). Figure 3 shows the composite change in the probability density 
functions (PDF) for the NIÑO3.4 index (Steiger et al., 2018), as well as the change in the percentiles of NIÑO3.4 
SST anomalies. To capitalize on the full PHYDA ensemble, Figure 3 includes data for volcanic eruption years 
in all ensemble members. We evaluated the impact of eruption size on the SST response, starting with a lower 
eruption magnitude of SAOD > 0.07 and increasing the threshold to SAOD > 0.22. Note that for an SAOD > 0.22 
(Figures 3e and 3f), only nine of the largest eruptions within the period 1–2000 CE are included in the analysis.

The PDFs, when all ensemble members are included, indicate significant shifts toward warm SSTs in the poster-
uption means of the PDFs (p < 0.05, two-tailed t test). There is an unusual increase in the frequency of warm 
NIÑO3.4 region anomalies during the eruption year for large events (black curves compared to gray, Figures 3a, 
3c, and 3e). These results hold for all SAOD thresholds (0.07, 0.13, 0.22).

Changes in the percentiles of NIÑO3.4 region SSTs are shown alongside the PDFs in Figures 3b, 3d, and 3f. We 
computed the (5 th, 25 th, 50 th, 75 th, and 95 th) percentiles of the NIÑO3.4 SST anomalies for the ensemble of erup-
tion and noneruption years. As shown in Figures 3b, 3d, and 3f, SSTs are generally warmer in the eruption year 
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Figure 3.  NIÑO3.4 index changes in response to volcanic eruptions. Probability density functions for annually averaged NIÑO3.4 index values for the 2 years 
following the eruption year; shown are the PDFs for the full PHYDA ensemble (n = 998 ensemble members) of all eruption years exceeding the SAOD threshold (0.07, 
0.13, and 0.22). Plotted are the eruption year (black), YR + 1 (red), +2 (blue). Gray thick line: PHYDA ensemble mean data for noneruption years. (a, c, e) NIÑO34 
region SST anomalies, PDF, for varying eruption thresholds. (b, d, f) Change in percentiles (5%, 25%, 50%, 75%, 95%) for NIÑO34 SST anomalies.
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(black curve falls above gray curve, indicating the NIÑO3.4 SST anomalies are higher for a given percentile). 
However, in years +1 and +2, SST anomalies are generally the same as noneruption years or colder, especially 
for the largest eruption class (Figure 3f). Most shifts in PDFs are significant at the 95% confidence level (based 
on a two-tailed t test). There is one important exception: as shown in Table S1 in Supporting Information S1, all 
shifts are significant at the 95% confidence level except year +1 for SAOD = 0.07 (p = 0.5). Indeed, Figure 3b 
shows that the red curve (YR + 1) is very similar to the no-eruption years response.

3.3.  Self-Organizing Map Analysis

We employed a second frequency-based analysis approach using a SOM algorithm (Kohonen, 1998) to extract the 
primary modes of Pacific SSTs within PHYDA without assuming a priori what those modes should be (Methods, 
Section 2.4). This spatial analysis compliments the NINO index analysis of Figure 3. We use the SOM algorithm 
to assign annual SST anomaly fields to spatial patterns of a preset number (Figures 4a–4f). Note that because 
data assimilation relies on the climate model to connect spatial locations, the spatial patterns seen in the SOM 
analysis reflects the DA prior (though in PHYDA’s case, a bias-corrected prior); this is inherent to all data-as-
similation-based reconstructions and is the trade-off for dynamical information afforded by the climate model 
(see Section 2.1).

Figures 4a–4f show the six SOM-derived SST patterns that exist within PHYDA. The percentage-changes shown 
at the top of each panel indicate the frequency change of each pattern during eruption years compared to all years 
for SAOD greater than 0.13 (n = 37 eruptions). Referring to Figures 4a and 4b, particularly large shifts occur 
for SOMs 1 and 2. SOM1 is characterized by a weak El Niño-like warming; the shift in the frequency of this 
pattern is +104%. In contrast, the frequency of pattern 2, which shows large and intense tropical Pacific warming, 
decreases by 40%. These conflicting results suggest that there is an increase in the frequency of a muted El Niño-
like warming and a decrease in a strong tropical Pacific warming response for eruptions exceeding an SOAD of 
0.13.

Figure 4g, box plots indicate whether the percentage frequency changes in panels (a–f) are unusual or indicate a 
significant departure from randomness. Specifically, panel (g) gives the frequency changes as: (fVOLC − fALL)/fALL, 
where fVOLC is the frequency of each SOM pattern for eruption years and fALL the frequency of each SOM pattern 
for all years (i.e., the fraction of each SOM pattern in the full 2,000-year PHYDA data set). This mean frequency 
change for each pattern during eruption years is plotted as black crosses in Figure 4g. We did a bootstrap resampling 

Figure 4.  Self-organizing map analysis for eruptions with SAOD > 0.13. (a–f) The fundamental self-organizing map (SOM)-derived SST patterns. Each SOM is 
labeled with the percent change in the pattern frequency for volcanic eruption years only. The map color scale corresponds to the SOM SST anomalies in standardized 
units. The largest change in pattern frequency for eruption years is in pattern 1, which increases by 104%. (g) Shift in Self-Organizing Map Pattern Frequency. Changes 
in pattern frequency for eruption years (SAOD > 0.13) in black crosses compared to noneruption years (box plot range for n = 1,000 random draws from noneruption 
pattern assignments in dark cyan and from age-perturbed ensemble in purple). Frequency is computed as the occurrence of years corresponding to each pattern (node 
frequency) within the full pool of data.

%
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to test for significance by drawing random years from 1 to 2000 CE with the same sample size as the number 
of volcanic eruptions, and computing the SOM frequency changes for these samples. We repeated this process 
1,000 times and show the distribution of these frequency changes as cyan boxplots in Figure 4g. We performed 
a similar bootstrap resampling for the age-perturbed ensemble of volcanic event dates, shown as purple boxplots 
(see Sections 2.5 and 2.6). The results in Figure 4g show that, while patterns 1, 2, and 6 are unusual with respect 
to the normal range of SOM frequencies and show larger shifts, the shifts do not exceed plausible shifts observed 
in a resampling of the full time series. Notably, however, the change in pattern 1 does graze the 95% whisker of 
the bootstrap uncertainty distribution. For the scenarios assuming maximum age uncertainty, patterns 1, 2, and 6 
no longer stand out as unusual (comparing black crosses to purple boxplots).

We computed this result for two other volcanic forcing thresholds, SAOD > 0.07, 0.22 (Figures S9 and S10 in 
Supporting Information S1). For SAOD > 0.07, which contains a larger sample size of eruptions, the shift in 
pattern 1 is significant compared to the background, but not compared to the age-perturbed ensemble (Figure 
S9g in Supporting Information S1). In general, the results are consistent across the different volcanic forcing 
thresholds. Noting that the SOM SST patterns are held constant (as in Figures 4a–4f) for all of the six-pattern 
SOM results (Figures S9 and S10 in Supporting Information S1), the frequency of pattern 1 (weak El Niño-like 
warming) increases for all three volcanic forcing thresholds. For the largest class of eruptions (SAOD > 0.22, 
Figure S10 in Supporting Information S1), the frequency of SOMs 3 and 6, which show a La Niña-like cooling 
response, both decrease. None of these frequency shifts fully exceed the uncertainty range comparing the shifts 
to all years and to the age-perturbed ensemble, broadly consistent with the results shown in Figure 4g.

Finally, to check the sensitivity of our results to the number of SOM patterns, we recomputed the SOM frequency 
changes using four and eight patterns rather than six, using volcanic forcing thresholds of SAOD > 0.07, 0.13, 
0.22 (Figures S11–S16 in Supporting Information S1). Note that the order/position of the SOM patterns is not 
fixed across all SOM computations and changing the number of patterns results in slightly different patterns as 
determined by the SOM algorithm (e.g., pattern 4 for the 4-SOM analysis resembles pattern 1 for the 6-SOM 
analysis). Consistent with the six-pattern results, the weak El Niño-like warming pattern for the 4-SOM maps 
(SOM4, Figures S11–S13 in Supporting Information S1) increases in frequency, and the strong warming mode 
(SOM2) decreases in frequency. Similarly, using eight patterns (Figures S14–S16 in Supporting Information S1), 
two weak El Niño-like warming patterns (SOM1, SOM3) increase in frequency, while the La Niña-like pattern 
(SOM8) and intense tropical Pacific warming pattern (SOM2) decrease in frequency. For SAOD > 0.22, the 
SOM3 (El Niño-like warming pattern) shift exceeds the uncertainty range for the bootstrap resampling range, but 
not the age model ensemble.

Taken altogether, the broad similarities in these results suggest that the frequency shifts are robust, even consid-
ering different numbers of SOM patterns and different volcanic forcing thresholds. The result of a weak El Niño-
like warming response is consistent with modeling studies that suggest warming in the central and eastern tropical 
Pacific following sufficiently explosive tropical volcanism in the last millennium (Adams et al., 2003; Emile-
Geay et al., 2008; Handler, 1984; Khodri et al., 2017; Maher et al., 2015; Pausata et al., 2015, 2016; Stevenson 
et al., 2016). Importantly, however, while the shifts toward El Niño-like conditions are unusual and consistent 
across eruption size and SOM pattern number, most do not exceed the 95 th percentile of background frequency 
shifts indicated by resampling tests for all years and within the age-perturbed volcanic forcing years.

4.  Discussion
An array of recent GCM simulations support a dynamical connection between volcanism and ENSO. The robust 
El Niño-like response to volcanism observed in coupled climate model simulations (Adams et al., 2003; Emile-
Geay et al., 2008; Handler, 1984; Khodri et al., 2017; Maher et al., 2015; Pausata et al., 2015, 2016; Stevenson 
et al., 2016) requires independent support from the paleoclimate (observational) record. However, it is difficult 
to (a) ground model simulations using paleoclimate data and (b) either verify or refute the dynamical hypotheses 
that may explain this relationship without a broader, subannually resolved, and systematically screened pool of 
paleoclimate records. To address this, we evaluated a novel data-assimilation-based reconstruction of the last 
millennium (PHYDA) to check the expression of volcanic forcing on tropical Pacific dynamics, performing a 
simple hypothesis test.
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We find that PHYDA does show a weak El Niño-like warming response, especially in the central equatorial 
Pacific, following sufficiently large volcanic events, a result that is especially apparent in frequency-based anal-
yses (Figures 3 and 4). The SEA maps indicate weak, statistically insignificant warming in the eruption year 
(Figure 2), to a much lesser degree than what models show (0.1°C–0.2°C compared to 1°C; see Figure S6 in 
Supporting Information S1); furthermore, for stronger eruptions, SEA suggests widespread cooling across the 
tropical Pacific (Figures S2, S3, and S5–S8 in Supporting Information S1). Using a block-bootstrap resampling 
test, we find that the warming that emerges from the SEA  is not significant at the 95% level. The frequen-
cy-based analyses, PDFs and SOMs, show an increase in warm SST values in the year of the eruption, and 
subsequent cooling in years 1 and 2. We used SOMs to isolate patterns of individual SST patterns and then track 
their frequency after volcanic eruptions. The SOM analysis not only suggests a shift toward weak El Niño-like 
warming (Figures 4a and 4g) but also supports a decrease in the frequency of higher-magnitude tropical Pacific 
warming events (e.g., Figure 4b). The SOM changes do not categorically trend toward El Niño-like conditions. 
This result holds across several radiative forcing thresholds (Figures S11–S13 in Supporting Information S1) and 
SOM pattern numbers (Figures S13–S18 in Supporting Information S1). As mentioned in Section 3, the shifts in 
the post-eruption year PDFs are significant at the 95% level. Shifts in the SOM pattern frequencies do not exceed 
uncertainty bounds at the 95% level, with the notable exceptions of SOM1 for SAOD exceeding 0.07 (Figure S9 
in Supporting Information S1, 6-SOMs) and SOM3 for SAOD exceeding 0.22 (Figure S16 in Supporting Infor-
mation S1, 8-SOMs). Uncertainty quantification was performed by resampling the background frequency shifts 
for all years and age-perturbed volcanic forcing years.

The differences between the SEA, PDF, and SOM results underscore the sensitivity of our conclusions, and the 
conclusions of many other studies, to analysis method selection. Frequency-sensitive analyses (PDFs, SOM) 
show evidence of unusual weak El Niño-like warming compared to a background distribution, but composite 
averaging methods (SEA) do not. It is possible that the frequency-based analyses more effectively filter out 
climate system noise unrelated to ENSO. SOMs (as well as simple PDFs, Figure 3) employ frequency analysis, 
whereas SEA uses strictly composite averaging without evaluation of changes in event frequency. Frequency 
analysis may provide a more robust (or sensitive) analysis method for this type of problem, which depends on 
event lead-lag relationships; SEA’s simplistic composite averaging potentially dampens or obfuscates the true 
climate signal in the data and may not be sensitive enough for small sample problems like volcanic eruptions 
over the last millennium. Indeed, the warming is weak enough that it may prove difficult to detect in other data 
products, such as regional or local paleoclimate reconstructions (especially if SEA is employed).

A consistent strong tropical Pacific warming response to volcanism, as observed in GCMs, does not emerge in 
PHYDA, which provides an annually resolved NIÑO34 reconstruction spanning two millennia (1–2000 CE), 
longer than most studies which have historically only evaluated the last 1,000 years. While a weak “El Niño-like” 
SST pattern increases in frequency following volcanic eruptions in PHYDA, it is possible that a more diverse 
array of SST responses occur (e.g., Figure 4b); and, as mentioned above, the response is not significant at the 
95% level. Furthermore, all our results (both compositing and frequency based) suggest more modest warming in 
PHYDA compared to GCMs, which simulate a volcanic response which is an order of ga.

A number of recent studies have suggested an oversensitivity of GCM responses to volcanic forcing (e.g. Dee 
et al., 2020). For example, CMIP5 models (including CESM) tend to overestimate tropospheric cooling follow-
ing eruptions in the nineteenth and twentieth century (Chylek et  al.,  2020) and do not correctly capture the 
observed strengthening of the Northern Hemisphere polar vortex and positive phase NAO conditions (Driscoll 
et al., 2012); in AMIP5 models, the precipitation response to volcanism is overestimated (Meyer et al., 2016). 
To illustrate the mismatch, Figure S6 in Supporting Information S1 compares the volcanic SEA of the PHYDA 
versus CESM-LME NINO34 region SST anomalies. In agreement with the results presented in Dee et al. (2020), 
the climate model response to volcanic forcing is amplified compared to PHYDA and other paleoclimate proxy 
records. This comparison alongside other studies call into question the ability of GCMs to correctly simulate 
the regional climate response to external forcing. To date, however, none of the above-cited GCM analyses have 
employed SOMs or similar analyses. A more direct DA-GCM requires the evaluation of SOM patterns and ampli-
tudes in CESM and CMIP5-6 models.

Explanations for the model–data mismatch may include an oversensitivity of the GCMs to stratospheric aerosol 
forcing (LeGrande et al., 2016), structural GCM errors, or uncertainties in the volcanic forcing reconstructions 
(Stevenson et al., 2016). In particular, the methodology for most volcanic forcing reconstructions is such that ice 
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core-derived sulfate aerosol loading estimates are scaled to the radiative aerosol forcing observed via satellite 
retrievals for the 1991 eruption of Pinatubo (Gao et al., 2006; Sigl et al., 2015). If sulfur emissions vary signif-
icantly among eruptions, the scaling applied to the volcanic aerosol forcing may harbor large uncertainties and 
result in forcing that is too large (LeGrande et al., 2016). Finally, recent work demonstrates that the seasonality of 
volcanic eruptions matters (Stevenson et al., 2017); yet, the ice core reconstructions employed in this work cannot 
capture the timing of each eruption during the year (unless it is independently deduced from historical documen-
tation). GCM simulations spanning the last millennium assume that all eruptions occur in a single season (Gao 
et al., 2006; Stevenson et al., 2016). In PHYDA, the beginning of the year is set to April, such that the annual 
response to volcanism averages over the period April to the following March. It is therefore likely that our data–
model comparison inferences are contingent on better constraints on eruption season and implementation of that 
timing in climate model simulations. Because of the strong seasonality of ENSO, further investigation into the 
seasonality of the eruption may lend insight to the model–data mismatch.

We note several additional caveats this work. Sample sizes for eruptions exceeding higher thresholds (e.g., larger 
than Pinatubo) are small. Our analyses average over a small sample size, which likely impacts the robustness of 
our results. This analysis is further complicated by the fact that the climatic effects of volcanic eruptions are short 
lived (1–5 years). Because the climatic timescale of response to volcanism is essentially the same as the timescale 
of ENSO phasing, natural variability confounds our assessment the climate response to external forcing alone. 
Furthermore, a significant fraction of the global dynamical response to volcanism can map onto ENSO-driven 
climate change and masquerade as ENSO when it is not, and this is a complicated signal to tease apart; for exam-
ple, most large eruptions of the twentieth century happened to coincide with El Niño events which counteracted 
volcanic cooling (Lehner et al., 2016).

Our results are dependent upon accurate dating of the volcanic forcing. We show that under maximum dating 
uncertainty scenarios, it is very difficult to investigate the climate of short-lived events like eruptions. For exam-
ple, in our age model scenarios, we see a large increase in the spread of the SOM frequency null, as shown in 
Figure 4 and Figures S9–S16 in Supporting Information S1. Even with a simulated stochastic shift of ±1–2 years, 
our ability to detect a volcanic signal is degraded.

Finally, CESM-LME is the prior for PHYDA, and several studies have highlighted the exaggerated ENSO pattern 
in the CESM model in general. Given that the covariance structure of the climate patterns in PHYDA are depend-
ent on CESM, the patterns produced by the SEA and SOM analyses will by definition include spatial information 
from CESM. Model biases, in particular in response to volcanic eruptions, may play a role in determining how 
proxy data are assimilated and expressed in DA reconstructions (e.g., Sanchez et al., 2021). ENSO variance in 
the model exceeds that of the observations, and this enhanced ENSO response may amplify interactions with 
volcanic cooling (Stevenson et al., 2016). Even though PHYDA’s SSTs have been bias corrected and thus its 
ENSO spectra is much more similar to observations than the stand-alone CESM-LME (Steiger et  al., 2019), 
the strong volcanic reaction in CESM may still incorrectly bias PHYDA’s volcanic response. However, because 
PHYDA uses an off-line data assimilation approach, its time history is informed only by proxy information. This 
is important given the fact that the frequency analyses (PDFs and SOMs) shown in Figures 3 and 4 focus on 
temporal shifts rather than the explicit shape of the pattern of the El Niño SSTs. This, in conjunction with the bias 
correcting of PHYDA, make it very likely that PHYDA’s ENSO is less biased than climate model simulations and 
is therefore useful in the analyses presented here.

To this point, we assert issues with the magnitude of the tropical Pacific SST response, potentially biased by the 
prior, would matter more for SEA. The bias in CESM’s response to volcanism would lead to an exaggerated El 
Niño-like response in PHYDA; yet, the warming is not significant in the SEA (Figure 2 and Figures S5 and S6 
in Supporting Information S1), nor in the SOM shifts (Figure 4). While the volcanic forcing applied in CESM is 
different from the volcanic forcing employed here (evolv2k; Toohey & Sigl, 2017), the proxy-specific temporal 
response to volcanic forcing afforded by PHYDA is distinct from CESM in terms of both time and magnitude. 
Put another way, CESM’s volcanic response, though perhaps overestimated (Dee et al., 2020), does not tip the 
balance pushing the PHYDA reconstruction to a significant volcanic response. Future work could employ fixed-
proxy networks in the DA or use a different climate model or observational prior (i.e., reanalysis) to fully evaluate 
the impact of the CESM prior on our results.
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5.  Conclusions
We are left with a few key questions: are volcanic forcing impacts on ENSO detectable in currently available 
proxy networks and paleoclimate reconstructions? Are we using the correct methods and thresholds for detec-
tion? The analysis presented here favors the appearance of weak El Niño-like warming, which (a) may not emerge 
beyond the noise of internal variability and (b) may be difficult to detect in the paleoclimate proxy record (annu-
ally resolved proxy records such as corals intersecting volcanic eruptions lack full tropical Pacific coverage in 
space and time). Furthermore, a strong, significant cooling signal appears in PDF analyses in years 1 and 2. 
The SEA and frequency-based results underscore a competition between simplistic averaging methods (SEA), 
which yields a null result (volcanic eruptions do not significantly change tropical Pacific SSTs in a reliable, 
predictable way), and two frequency analyses, PDFs and SOMs, which show a similar El Niño-like warming 
response and a La Niña-like cooling response. Frequency analyses may be more sensitive to shifts in ENSO 
state within the context of small numbers of events. Historically, because of the available time series data, SEA 
has been employed to ensure consistent comparisons between GCM and paleoclimate data. With forthcoming 
paleoclimate DA reconstructions, comparisons between gridded model simulations and DA reconstructions may 
further elucidate the tropical Pacific response to volcanic forcing, enhancing our understanding of the model–data 
mismatch and improving model forcing and physics.

Indeed, forthcoming paleoclimate data assimilation products may help resolve competing theories regarding 
the ENSO response to volcanic eruptions (Section 1); however, we assert that such resolution would require 
DA products which reconstruct ocean dynamical fields, such as circulation, thermocline depth, and potentially 
surface wind fields. Skillful reconstructions of these ENSO-relevant variables are required to further evaluate the 
competing influences of the ocean dynamical thermostat (Clement et al., 1996) or Walker Circulation changes 
driven by remote forcing (Khodri et al., 2017). However, some model-generated hypotheses, such as changes 
in land–ocean temperature gradients (Ohba et  al.,  2013; Predybaylo et  al.,  2017) and ITCZ shifts (Pausata 
et al., 2020) could be readily evaluated in currently available DA reconstructions (e.g., PHYDA, LMR).

The ability of state-of-the-art GCMs to faithfully simulate ENSO’s response to external forcing is of paramount 
importance to climate prediction as we accelerate into a future with higher anthropogenic greenhouse gas emis-
sions. Furthermore, large volcanic eruptions may occur at any time, with documented impacts on temperature and 
hydroclimate, but poorly constrained interactions with ENSO. While there is high confidence that ENSO itself 
will continue under global warming, we have low confidence as to its response to increasing greenhouse gases 
and other forcings (IPCC, 2013). ENSO’s response to continued greenhouse gas forcing, which now exceeds 
+3 W/m 2 year (exceeding most volcanic forcing events of the Common Era), is made uncertain by the potential 
for future regime changes, which may manifest as a nonlinear, abrupt shift in response to a linear radiative forcing 
(Cobb et al., 2003, 2013). It is of global importance to investigate how ENSO will respond to future radiative 
forcing: ensuring that model simulations and the paleoclimate record, enhanced by data assimilation, can be 
reconciled is a step toward predicting that response.
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